background image

GEOLOGICA CARPATHICA

, FEBRUARY 2017, 68, 1, 19 – 28

doi: 10.1515/geoca-2017-0002

www.geologicacarpathica.com

Long-term geomorphological evolution in the Abruzzo area, 

Central Italy: twenty years of research

ENRICO MICCADEI, TOMMASO PIACENTINI and MARCELLO BUCCOLINI

Department of Engineering and Geology, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Italy;  

miccadei@unich.it, tpiacentini@unich.it, buccolini@unich.it

(Manuscript received January 8, 2016; accepted in revised form November 30, 2016)

Abstract: The most recent research studies into the long-term landscape evolution of the Abruzzo area, carried out over 

the last twenty years at the “G. d’Annunzio” University of Chieti-Pescara, are based on an integrated approach incorpo-

rating structural geology and geomorphology and, in particular, the geomorphometry of topographic and hydrographic 

aspects, geological and structural-geomorphological surveys and mapping supported by morpho-stratigraphic and 

chrono logical constraints.The geomorphological analyses have allowed us to outline the main stages of geomorphological 

evolution and to identify the factors that have contributed to the landscape shaping of the Apennine Chain, the Adriatic 

Piedmont and the fluvial plains and coastal sectors, up to the Tremiti islands. In the Apennine Chain, landscape evolution 

— in a ridge, valley and basin system — is connected to the regional uplift, local tectonic subsidence and local base level 

variations, which have led to changes in the drainage systems, from exoreic to endorheic (in the intermontane basins) and 

then to exoreic again. In the Adriatic Piedmont, landscape shaping is connected to uplifting and eustatic sea-level 

 fluctuations, which have induced the formation of a structure-controlled drainage system and the shaping of systems of 

entrenched alluvial fans and large consequent river valleys, with flights of river terraces. In the coastal Adriatic area  

— composed of a coastal plain-coastal slope system (northern and southern coast) and of a cliffed rocky coast (central 

coast, Tremiti) interrupted by river valleys — landscape shaping is the result of selective erosion due to the interaction 

between marine geomorphic processes and slope processes connected to Late Quaternary eustatic fluctuations.

Keywords:  geomorphological studies, landscape evolution, Neogene–Quaternary, Central Apennine Chain, Adriatic 

Piedmont, coastal areas.

Introduction

Research studies on the relief landforms and processes that 

characterize the Abruzzo area are very complex, requiring an 

interdisciplinary approach that involves structural geomor-

phology in a broad sense, and must take into consideration the 

various tectonic events that occurred in the Central 

Apennines.

The Abruzzo area can be divided into three main morpho-

structural domains: the Central Apennines Chain, the Adriatic 

Piedmont, with its large fluvial plains, and the coastal area, 

each one presenting different morphostructural features in 

terms of both surface and deep structure. The structural- 

geomorphological relations, boundaries and internal differen-

tiations between the three domains, which reflect a different 

morphogenesis at different times, are particularly significant. 

In this framework, the various stages of evolution (especially 

the initial ones) and the connections between the domains are 

not entirely clear. These domains are the result of differen-

tiated geomorphological evolution, which took place after the 

initial emersion stages: Eocene–?Oligocene to Miocene in the 

chain areas and late Early Pleistocene in the piedmont and 

even later in the coastal areas.

The geomorphological research conducted over the last 

twenty years by the authors — and still under way — has 

focused on the long-term geomorphological evolution of the 

Abruzzo area, in connection with the scientific debate (since 

Castiglioni 1935; Demangeot 1965; Mazzanti & Trevisan 

1978) about the evolution of Central Italy. The research has 

focused on the comparison of the Apennine Chain, the Adria-

tic Piedmont and the Adriatic sectors, up to the Tremiti islands 

(Fig. 1), with particular reference to:

•  morphogenesis in the chain, piedmont and coastal 

 

areas;

•  geomorphological evolution of the intermontane basins 

and the main Abruzzo drainage systems, with reference to 

tectonic processes and eustatic fluctuations;

•  slope processes in relation to morphostructural features.

The research work of the authors was based upon detailed 

geomorphological analyses carried out at local, catchment  

and regional scales, including in particular topography and 

hydro 

graphy geomorphometry, bedrock and Quaternary 

 surface deposits mapping, and structural-geomorphological 

mapping, further supported by the definition of morpho- 

stratigraphic and chronological constraints (

14

C,  U/Th,  

Ar/Ar dating). This approach is a key tool for understanding 

the long-term evolution of the landscape resulting from the 

combination of the tectonic processes that have built up the 

relief and the geomorphological surface processes that have 

dismantled it. 

background image

20

MICCADEI, PIACENTINI and BUCCOLINI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

General geological and geomorphological structure 

of the Abruzzo area

The current landscape setting of the Abruzzo area, as well as 

that of the northern and southern Italian peninsula, is the result 

of the Neogene–Quaternary geological evolution of an 

east-verging chain-foredeep-foreland orogenic system gene-

rated through the westward subduction of the Adriatic micro-

plate (Fig. 1). 

Geomorphological evolution began with the emersion of the 

orogen, forming an initial landscape, at least from the Mio-

cene (possibly Eocene–?Oligocene) in the chain area and from 

the late Early

 

Pleistocene in the piedmont area, and it is closely 

connected with a complex combination of endogenous (mor-

photectonics) and exogenous processes (slope, fluvial, karst 

and glacial processes), also inducing selective erosion on 

 existing geological structures.

The morphology of the Central Apennine Chain is asym-

metric, with its highest peaks (Gran Sasso, 2912 m a.s.l.; 

Maiella, 2793 m a.s.l.; Figs. 1 and 2) located eastward of the 

main Tyrrhenian–Adriatic drainage divide, and is characte-

rized by the superimposition of undulations of different wave-

lengths, comprising a wide bulging (>100 km), intermediate 

undulations  (10 –20  km)  and  minor  undulations  (< 2km) 

(Fig. 2; D’Agostino et al. 2001; Molin & Fubelli 2005; 

 Piacentini & Miccadei 2014). The chain is made up of thrust 

sheets that were generated through the deformation of 

 Mesozoic–Cenozoic palaeogeographical domains (carbonate 

platforms and related margins, slope and basin) consisting of 

pre-orogenic lithological sequences having different 

Fig. 1. Location map of the study area and geological scheme of central Italy (modified from Parotto et al. 2004). The boxes show the location 

of Fig. 2.

background image

21

GEOMORPHOLOGICAL EVOLUTION IN THE ABRUZZO AREA, CENTRAL ITALY: TWENTY YEARS OF RESEARCH

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

thicknesses, rheology and erodibility (mainly limestone and/or 

alternating limestone/marl). Orogenic compressional tectonics 

along NW–SE to N–S-oriented thrusts affected the Central 

Apennines from the Late Miocene (western side) to the Early 

Pliocene (eastern side). This deformation caused the complex 

superimposition of the tectonic units one over the other and 

over synorogenic pelitic arenaceous turbiditic sequences.  

The consequent tectonic thickening led to the emersion of the 

chain and the shaping of the incipient landscape composed of 

low hilly relief, gentle surfaces and islands, bordered by bays 

and small marine basins (Coltorti & Pieruccini 2000; Parotto 

et  al.  2004; APAT  2006 a,b,c,d;  Patacca  et  al.  2008;  ISPRA 

2010 a,b,c,d;  Vezzani  et  al.  2010;  Calamita  et  al.  2012; 

 Miccadei  et  al.  2012 a;  Bonini  et  al.  2014  and  references 

therein). Compressional deformation was followed by strike-

slip tectonics along mostly NW–SE to NNW–SSE-oriented 

faults poorly constrained in age and largely masked by later 

extensional tectonic events. Strike-slip tectonics contributed 

to defining a more complex tectonic setting, deforming the 

compressional tectonic units.

Since the Early Pleistocene (and more intensively during  

the Middle Pleistocene), the orogen underwent regional up lif-

ting (average rate 0.2–1 mm/a), connected to sublithospheric 

dynamics and responsible for the long-wavelength bulging of 

the chain (Demangeot 1965; Cinque et al. 1993; Dramis 1993; 

Ascione & Cinque 1999; D’Agostino et al. 2001; Mayer et  

al. 2003; Ascione et al. 2008; Carminati & Doglioni 2012; 

 Faccenna et al. 2014). In connection with regional uplift, local 

extensional tectonics affected the chain — first in the western 

areas and then in the eastern ones — and led to the formation 

of the intermediate topography undulations along the main 

NW–SE-trending extensional fault systems (Fig. 2) (average 

slip-rates ~ 0.1–1.5 mm/a; Papanikolaou et al. 2005 and refe-

rences therein). This caused the uplifting of the chain system, 

the formation of the intermontane basins (Cavinato & De 

Celles 1999; Galadini & Messina 2004; Giaccio et al. 2012; 

Bonini et al. 2014; Piacentini & Miccadei 2014 and references 

therein), the ensuing widening of the chain area and the emer-

sion of the Adriatic Piedmont (Dramis 1993; Coltorti et al. 

1991, 1996; Aucelli et al. 1996; Centamore et al. 1996; Del 

Monte et al. 1996; Lupia Palmieri et al. 1996, 1998; Ascione 

& Cinque 1999; D’Alessandro et al. 2003; Mayer et al. 2003). 

The present-day tectonic setting is characterized by exten-

sional tectonics still active in the axial part of the chain, which 

is characterized by intense seismicity and strong historical 

earthquakes (up to M 7.0; e.g. Fucino 1915; L’Aquila 2009). 

The Adriatic Piedmont is characterized by moderate uplifting 

and moderate seismicity, while the Adriatic sea is affected by 

subsidence and by moderate compression and strike-slip 

related seismicity (Di Bucci & Angeloni 2013 and references 

therein).

The combination of these processes with Quaternary cli-

mate fluctuations led to the most important morphogenetic 

phases, involving morphotectonic and selective erosion pro-

cesses, both in the chain area and in the piedmont and coastal 

areas. This resulted in the reorganization of drainage systems, 

the dismembering of the palaeo-landscapes generated during 

the initial shaping stage, the development of consequent 

 valleys with flights of fluvial terraces and the formation of the 

present-day landscape (D’Agostino et al. 2001; Ascione et al. 

2008; Nesci et al. 2012; Piacentini & Miccadei 2014 and refe-

rences therein).

Fig. 2. Swath profile in the SW–NE direction across the central Apennines (from 40 m DEM). Maximum, minimum and average elevations 

(and the related interpolation) are shown, as well as the main extensional fault systems and the position of the main divides (modified form 

Piacentini & Miccadei 2014).

background image

22

MICCADEI, PIACENTINI and BUCCOLINI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

Main stages of geomorphological evolution in the 

chain, piedmont and coastal sectors  

of the Abruzzo area

The present-day relief of the central Apennine Chain area 

consists of a series of morphostructural elements that form the 

intermediate undulations of the topography (Figs. 2 and 3):

•  ridges resulting from a combination of morphotectonic 

and selective erosion processes, with variable NW–SE to 

N–S directions (e.g., thrust ridges, anticlinal ridges, faulted 

homocline ridges), formed in pre-orogenic Mesozoic–

Cenozoic calcareous sequences;

•  narrow erosion valleys (e.g., fault line valleys, transversal 

valleys, radial valleys), longitudinal and transversal to the 

Fig. 3. Scheme of the morphostructural elements of central-eastern Abruzzo (modified from D’Alessandro et al. 2003). 

 

Chain (C) — Ridges: Cr1) exhumed thrust ridge; Cr2) faulted homocline ridge; Cr3) exhumed anticline ridge. Valleys: Cv1) tectonic valley; 

Cv2) fault line valley; Cv3) radial or transversal valley. Basins: Cb1) tectonic basin; Cb2) tectonic-karst basin. Piedmont (M) — Reliefs: 

Mh1) homoclinal reliefs; Mh2) mesa relief; Mh3) exhumed thrust relief; Mh4) relief on chaotic lithological sequences; Valleys: Mv1) conse-

quent valley; Mv2) subsequent valley. Plains (P) — Pa) Alluvial plains. Symbols: 1) dip direction domain; 2) thrust; 3) strike-slip fault ; 4) 

normal fault; 5) main fault scarp; 6) main fault line scarp; 7) main ridge; 8) divide.

background image

23

GEOMORPHOLOGICAL EVOLUTION IN THE ABRUZZO AREA, CENTRAL ITALY: TWENTY YEARS OF RESEARCH

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

NW–SE-trending chain axis, underlain by synorogenic 

pelitic-arenaceous sequences (fault line valleys) or carved 

into the calcareous bedrock (transversal and radial 

valleys);

•  tectonic valleys and large tectonic intermontane basins, 

mostly NW–SE-elongated and partly filled with Quater-

nary post-orogenic continental deposits.

These morphostructural elements were affected by the main 

surface processes (mostly fluvial, slope, lacustrine, karst and 

glacial) induced and controlled by climate fluctuations, local 

and regional tectonics and related base level variations.

The analysis of the geomorphological-structural characte-

ristics of the main ridges, valleys and intermontane basins, of 

the drainage systems and of karst palaeo-landscapes (Ciccacci 

et al. 1999; Miccadei et al. 1999; Piacentini 2000; Cavinato et 

al. 2002; Villani 2004; Ascione et al. 2007; Berti 2008; 

 Piacentini & Miccadei 2014; Santo et al. 2014 and references 

therein) has enabled us to outline the evolution of the land-

scape in relation to uplifting, extensional tectonics and geo-

morphological processes (Fig. 4). 

The earliest evidence of local erosion, probably due to karst 

processes, dates back to the Eocene–Oligocene (Miccadei et 

al. 2012a), bearing witness to the early emersion

 

that took 

place when the area was still in the foreland of the Apennine 

orogenic system. Between the Late Miocene and the Pliocene, 

the Abruzzo area was progressively affected by compressional 

tectonics. The landscape was gradually transformed into 

a series of islands, separated by some marine sedimentary 

basins, where deposits were laid down over the deformed 

pre-orogenic sequences (piggy-back, thrust-top basins; 

Fig. 4. Distribution of the geomorphic processes in the chain, piedmont and coastal plain sectors of the Abruzzo area.

background image

24

MICCADEI, PIACENTINI and BUCCOLINI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

Cipollari et al. 1999; Miccadei et al. 2012a and references 

therein). This initial landscape was characterized by minor 

topographic undulations related to karst and fluvial erosion, 

the remnants of which have been preserved at the top of the 

relief; patches of conglomerates with allochthonous elements 

found at high elevations and in large hanging valleys provide 

evidence of a pre-existing drainage system originating from 

the western sectors (Marsica area; Miccadei & Parotto 1999; 

Miccadei et al. 2012a). 

In the chain area, since the Early Pleistocene (Fig. 4), anti-

clinal ridges, thrust ridges (e.g., Monte Morrone, Montagna 

Grande) and fault line valleys (e.g., the Giovenco River Valley, 

Sangro River Valley and Tasso Stream Valley) have been 

shaped by the geomorphic processes controlled by the litho-

structural features of

 

compressional structures. The presence 

of palaeosurface remnants on top of the relief and the arrange-

ment of continental deposits on the valley slopes show various 

stages in the deepening of the hydrographic network and in the 

incision of the landscape that started in the Early Pleistocene, 

when part of the relief had probably already developed 

 (Galadini & Messina 2004; Ascione et al. 2008; Aucelli et al. 

2011; Giaccio et al. 2012). This led to the outline of the current 

chain configuration. 

Intermontane basins, tectonic valleys and homoclinal 

faulted ridges started to be shaped diachronically in connec-

tion with extensional tectonics: from the Early Pleistocene in 

the western portion of the Apennines and from the late Early 

Pleistocene in the axial and eastern sides (Figs. 3 and 4) 

 (Cavinato & De Celles 1999; D’Agostino et al. 2001; Galadini 

& Messina 2004; Carminati & Doglioni 2012; Bonini et al. 

2014; Mazzoli et al. 2014; Piacentini & Miccadei 2014). Large 

intermontane basins were formed, elongated in a NW–SE to 

NNW–SSE direction and bounded by normal faults mostly on 

their eastern sides (Fig. 4). These basins were progressively 

filled with sequences of alluvial fan, fluvial and lacustrine 

deposits. The tectonic subsidence of the basins led to the 

 re arrangement of the drainage systems and the formation of 

endorheic areas in the axial part of the chain (Fucino, 

L’Aquila). 

During the Early–Middle Pleistocene, intermontane basins 

were filled primarily by sequences of lacustrine deposits. 

These bear witness to the formation of a large system of lacus-

trine basins within low-lying areas bordered by fault related 

escarpments and fault slopes. These basins developed mostly 

along NW–SE and WSW–ENE-oriented fault systems, with 

complex deformation histories (including strike-slip move-

ments) and a last stage characterized by extensional tectonics. 

During the latter, the local tectonic subsidence rate was higher 

than the regional

 

uplift rate, thus preserving an endorheic 

drainage system in the basins. 

Extensional tectonics induced the formation of large sets of 

tectonic landforms and of slope-alluvial fan deposits. At the 

same time, variations in local base levels (within the intermon-

tane basins) and the deepening of the hydrographic network 

induced intense surface processes and controlled the develop-

ment and exhumation of thrust and anticlinal ridges (Ciccacci 

et al. 1999; Miccadei et al. 1999, 2004; Cavinato et al. 2002; 

Galadini & Messina 2004; Giaccio et al. 2012; Piacentini & 

Miccadei 2014; Santo et al. 2014; for the surrounding areas 

see also Coltorti et al. 1991, 1996; Amato et al. 2014; Aringoli 

et al. 2014; Giano et al. 2014; Labella et al. 2014 and refe-

rences therein). 

In the late Middle Pleistocene, the Appenines area under-

went an extensive landscape modification. A sudden change 

occurred, from closed drainage systems and lacustrine basins 

to open through-going drainage systems connected to the 

Adriatic Piedmont. This is indicated in the sedimentary 

sequence of the intermontane basins by the transition — with 

erosional contacts and unconformities — from lacustrine 

deposits to mainly fluvial and alluvial ones. In this stage, the 

effects of regional uplift and geomorphic processes overcame 

the local tectonic subsidence, inducing the incision and deepe-

ning of the drainage network. The connection between the 

basins and the Piedmont was the result of the incision of both 

longitudinal (along tectonic or fault line valleys) and trans-

versal deep gorges (along transversal valleys crossing fault 

slopes, faulted homocline ridges and thrust ridges). 

The front of the Apennine Chain experienced extensive 

modifications connected with the evolution of the chain. From 

the Miocene to the Pliocene, the front migrated from west to 

east, inducing the gradual emersion of the chain. Since the 

Early Pleistocene, it has been located in its present position 

near the outer and more superficial thrusts. In this area, geo-

morphological studies and mapping (D’Alessandro et al. 

2008; Della Seta et al. 2008; Miccadei et al. 2012c, 2013) have 

shown the development of intense selective erosion processes 

induced by the regional uplift and controlled by the passive 

role of morphostructures and lithology in terms of hardness, 

fracturing and erodibility. These processes resulted in the for-

mation of major thrust ridges (Gran Sasso, eastern Morrone) 

and exhumed anticlinal ridges (Maiella) along the chain front. 

From the Middle to the Late Pleistocene, these morphostruc-

tures were incised by radial valleys (Maiella) and transversal 

valleys. The main transversal valleys (e.g., Popoli gorges, 

 Pescara River) defined the connection of the drainage system 

of the Apennines Chain with the one in the piedmont area. 

Along the front of the chain, a sequence of alluvial fans and 

terraced fluvial deposits provides evidence that the incision 

occurred as a result of uplifting and drainage network deepe-

ning (see also Demangeot 1965; Dufaure et al. 1989; Coltorti 

et al. 1991, 1996; Aucelli et al. 1996; Del Monte et al. 1996; 

Nesci & Savelli 2003).

The Adriatic Piedmont landscape (D’Alessandro et al. 2003, 

2008; Paron 2004; Della Seta et al. 2008; Buccolini et al. 

2010; Miccadei et al. 2012c, 2013; for surrounding areas see 

also Coltorti et al. 1991, 1996; Giannandrea et al. 2014: Gioia 

et al. 2014) started to develop more recently, during the emer-

sion phase that occurred in the late Early Pleistocene (Fig. 4). 

Its morphostructural setting is the result of the late evolution 

of the Adriatic foredeep domain of the Apennine orogenic sys-

tem, with a coarsening-up sequence of marine clayey-san-

dy-conglomeratic rocks (Late Pliocene–Early Pleistocene) 

background image

25

GEOMORPHOLOGICAL EVOLUTION IN THE ABRUZZO AREA, CENTRAL ITALY: TWENTY YEARS OF RESEARCH

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

characterized by a slightly NE-dipping homoclinal setting. 

After the emersion, uplifting led to the shaping of cuestas, 

mesas and plateaux incised by approximately SW–NE- 

oriented consequent valleys. Some of these valleys lie within 

the piedmont area. Others originate from the chain front and 

cut across the whole piedmont. The main ones originate at the 

core of the chain, cross its front through the main transversal 

valleys and run across the piedmont within large alluvial 

plains. The latter are characterized by fluvial deposits arranged 

in flights of at least four orders of terraces that formed in the 

Middle Pleistocene–Holocene interval. The slopes are exten-

sively covered by landslide and colluvial deposits (Della Seta 

et  al.  2008;  D’Alessandro  et  al.  2008;  ISPRA  2010 a,b,c,d; 

Miccadei et al. 2013; for the surrounding areas see also 

Coltorti et al. 1991, 1996; Bracone et al. 2012; Nesci et al. 

2012; Giannandrea et al. 2014; Giano & Giannandrea 2014 

and references therein). Secondary valleys show clear geo-

morphological evidence of tectonics, such as river bends, 

hanging valleys and counterflow confluences. The correla-

tions between the above-mentioned geomorphic features and 

the various generations of alluvial fans and river terraces in the 

main and secondary valleys, together with the chronostrati-

graphic constraints, outline the shaping of a rectangular hydro-

graphic network and its possible timing. This network 

deve loped in the late Middle Pleistocene and was influenced 

by mainly SW–NE, N–S, NW–SE-oriented minor faults and 

main joints associated with uplifting processes. It was gra-

dually incorporated in the hydrographic network rearrange-

ment up to its current configuration, which indeed still shows 

a number of anomalies (network orientations, counterflow 

confluences, knick points, stream captures, etc.; D’Alessandro 

et  al.  2008;  Della  Seta  et  al.  2008;  Miccadei  et  al.  2012 c, 

2013). Finally, rapid slope and fluvial plain dynamics are also 

recorded in more recent times, mainly connected to anthropic 

factors (e.g. Coltorti et al. 1996; Capelli et al. 1997; Buccolini 

et al. 2007; Piacentini et al. 2015). 

Therefore, the piedmont area is mainly characterized by 

selective erosion processes, while the control of tectonics on 

landforms is less present, although it strongly contributed to 

defining the arrangement of the drainage network.

The Abruzzo coastal belt borders

 

the mesas and plateaux 

sloping down from the piedmont area. It features a narrow, 

elongated coastal plain bounded by palaeocliffs (northern 

part) and a rock coast with cliffs of variable height and small 

pocket beaches (southern part). Landscape shaping is con-

trolled by the geological setting of the Adriatic foredeep and 

induced by uplifting, climate changes and Late Quaternary 

eustatic sea-level fluctuations. In order to better understand 

the landscape evolution of foreland areas, this sector was com-

pared with the Tremiti area (Ricci 2005; Mascioli 2008; 

 Miccadei et al. 2011a,b, 2012b; Parlagreco et al. 2011). Large 

stretches of the Abruzzo coastal slopes are characterized by 

palaeo-landslides, which involved entire slope portions (e.g., 

Ortona, Vasto), leading to the current coast configuration. Col-

luvial deposits and calcretes (dating: U/Th 30 –50 ka) covering 

the landslide deposits allow us to date these phenomena to the 

first part of the Late Pleistocene, in low sea level stands 

(Calamita et al. 2012; Della Seta et al. 2013; Piacentini et al. 

2015). The Holocene post-glacial sea-level rise induced the 

filling of Late Pleistocene palaeo-valleys, the shaping of the 

present cliffs and coastal slopes and the formation of a narrow 

coastal plain. The coastal area is also characterized by recent 

system of coastal dunes largely removed by urbanization and 

anthropic activities (Miccadei et al. 2011b). The prevailing 

role of selective erosion and morphosculptures can be assessed 

in the coastal area too, in spite of the role played by tectonic 

features, which have passively controlled the development of 

cliffs and landslides.

Conclusions

The beginning of the morphogenesis and Quaternary geo-

morphologic evolution of the Apennine Chain and of the 

related piedmont and coastal areas has always been at the cen-

tre of lively scientific debate. The geomorphological analysis 

carried out by the authors in the Abruzzo and surrounding 

areas have allowed us to outline the main evolutionary stages 

and to identify the factors that have contributed to the land-

scape shaping of the main morphostructural domains (Fig. 4). 

The geomorphological evolution of these domains has varied 

over space and time and has been influenced by climate 

changes and the effects of regional uplift, with different conse-

quences related to local tectonics or litho-structural control. 

The main evidence is recorded in the morphostructures located 

at the boundaries between the chain, piedmont and coastal 

domains and in the internal variability of these domains  

(Fig. 4).

The Abruzzo Apennine Chain is characterized by a complex 

geological setting and landscape that evolved as a result of the 

continuous combination — from Neogene to Quaternary times 

— of tectonics and selective erosion, which are strongly 

 

influenced by the juxtaposition of different lithological 

sequences due to polyphasic (compressive, strike-slip and 

extensional) tectonics and regional uplift. Landscape shaping 

— in a ridge, valley and basin system — was thus controlled 

by the combination of regional uplift and local tectonic sub-

sidence, which induced changes in the drainage base levels of 

the intermontane basins and changes in the drainage systems, 

from exoreic to endorheic and then to exoreic again. Climate 

changes have affected the distribution of glacial and karst 

landforms

 

as well as the variation in landslides and debris pro-

duction on the slopes and sediment transport in river valleys. 

The overall morphostructural setting of the landscape is the 

result of the active role of tectonics (which is prevalent in the 

central and western sectors) and the passive role of the struc-

ture in selective erosion processes (which prevails in the 

southern and eastern sectors; Fig. 4).

The Adriatic Piedmont  has mainly a homoclinal morpho-

structural setting, incised by large consequent river valleys. 

Landscape shaping has mostly resulted from the combination 

of uplifting and eustatic sea-level fluctuations, together with 

background image

26

MICCADEI, PIACENTINI and BUCCOLINI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

climate changes and the related variation in sediment transport 

in slopes and rivers. These processes have controlled the 

selective erosion on hills and slopes and the shaping of river 

valleys, with the formation of a series of wide alluvial fans and 

fluvial terraces. From a morphostructural standpoint, the land-

scape is mainly influenced by selective erosion (cuestas, 

mesas,  plateaux)  and  uplift/fluvial  incision  processes  (river 

valleys and terraces), while the active role of local tectonics is 

less evident, although the main tectonic elements essentially 

controlled the development of the hydrographic network.

The coastal area is characterized, in the northern part, by 

a narrow and elongated coastal plain with remnants of palaeo-

cliffs, interrupted by wide river valleys and, in the central- 

southern part, by a rock coast with active and inactive cliffs 

and large landslides. From a morphostructural standpoint, 

landscape shaping is the result of selective erosion, due to the 

interaction between marine geomorphic processes (and Late 

Quaternary eustatic sea-level variations) and slope processes 

(major landslides). These processes have been induced by 

uplift and passively controlled by the litho-structural setting of 

the mesa and plateaux reliefs bordering the coast as well as by 

the presence of tectonic elements. More recently, the 

above-mentioned long-term processes have interacted, espe-

cially in the piedmont and coastal areas, with variations in 

river and coastal plain dynamics, mainly related to both natu-

ral and anthropic processes.

Acknowledgements: The authors wish to thank the reviewers 

of the manuscript (A. Ascione, B. Gentili, L. Stamatopulos) 

for their comments and suggestions, which greatly improved 

the manuscript and figures. The authors also wish to thank for 

their precious support, comments and suggestions, the Editor 

J. Minár and the Guest Editors of the Thematic Issue P.P.C. 

Aucelli, C.M. Rosskopf, M. Schiattarella. Special thanks  

also go to the ‘Struttura Speciale di Supporto Sistema Infor-

mativo  Regione  Abruzzo’  (http://www.regione.abruzzo.it/

xcartografia/;  http://opendata.regione.abruzzo.it/catalog)  for 

providing the topographic data, aerial photos and orthophotos 

used for the geomorphological investigations. This work is the 

result of twenty years’ research conducted by the authors at the 

Laboratory of Structural Geomorphology and GIS of the 

 Chieti-Pescara “G. d’Annunzio” University, with the contri-

bution of several PhD. theses (Piacentini 2000; Paron 2004; 

Villani 2004; Ricci 2005; Berti 2008; Mascioli 2008). This 

work is funded by University funds (E. Miccadei, M. Bucco-

lini, T. Piacentini) of the Department of Engineering and Geo-

logy, Università degli Studi G. d’Annunzio Chieti — Pescara 

(Italy), with the contribution of several PRIN-MIUR projects 

carried out by the authors.

References

Amato V., Aucelli P.P.C., Cesarano M., Jicha B., Lebreton V., Orain R., 

Pappone G., Petrosino P. & Russo Ermolli E. 2014: Quaternary 

evolution of the largest intermontane basin of the Molise Apen-

nine (central-southern Italy). Special Issue: Intermontane Basins: 

Quaternary morphoevolution of Central-Southern Italy. 

 

In: Aucelli P.P.C., Della Seta M., Giano S.I. & Schiattarella M. 

(Eds.):  Rendiconti Lincei — Scienze Fisiche e Naturali 25, 2,  

197–216. 

APAT 2006a: Geological Map of Italy, scale 1:50,000, Sheet 359 

“L’Aquila”. APAT Servizio Geologico d’Italia, Roma. Retrieved 

from  http://www.isprambiente.gov.it/Media/carg/359_LAQUILA/

Foglio.html (in Italian with English abstract and legend).

APAT 2006b: Geological Map of Italy, scale 1:50,000, Sheet 360 

“Torre de’ Passeri”. APAT Servizio Geologico d’Italia, Roma. 

Retrieved  from  http://www.isprambiente.gov.it/Media/carg 

/360_TORRE_DE_PASSERI/Foglio.html  (in  Italian  with 

English abstract and legend).

APAT 2006c: Geological Map of Italy, scale 1:50,000, Sheet 368 

“Avezzano”. APAT Servizio Geologico d’Italia, Roma. Retrieved 

from http://www.isprambiente.gov.it/Media/carg/368_AVEZ-

ZANO/Foglio.html  (in  Italian  with  English  abstract  and 

legend).

APAT 2006d: Geological Map of Italy, scale 1:50,000, Sheet 369 

“Sulmona”. APAT Servizio Geologico d’Italia, Roma. Retrieved 

from  http://www.isprambiente.gov.it/Media/carg/369_SUL-

MONA/Foglio.html  (in  Italian  with  English  abstract  and 

legend).

Aringoli D., Cavitolo P., Farabollini P., Galindo-Zaldivar J., Gentili 

B., Giano S. I., Lòpez-Garrido A. C., Materazzi M., Nibbi L., 

Pedrera A., Pambianchi G., Ruano P., Ruiz-Constàn A., Sanz de 

Galdeano C., Savelli D., E. Tondi & Troiani F. 2014: Morphotec-

tonic characterization of the quaternary intermontane basins of 

the Umbria-Marche Apennines (Italy). In: Aucelli P.P.C., Della 

Seta M., Giano S.I., Schiattarella M. (Eds.): Rendiconti Lincei 

— Scienze Fisiche e Naturali 25, 2, 111–128.

Ascione A. & Cinque A. 1999. Tectonics and erosion in the long term 

relief history of the Southern Apennines (Italy). Z. Geomorphol. 

Suppl. 118, 1–16.

Ascione A., Miccadei E., Villani F. & Berti C. 2007: Morphostruc-

tural setting of the Sangro and Volturno rivers divide area (Cen-

tral-Southern Apennines, Italy). Geogr. Fis. Dinam. Quat. 30, 

13–29. 

Ascione A., Cinque A., Miccadei E., Villani F. & Berti C. 2008: The 

Plio-Quaternary uplift of the Apennine chain: new data from the 

analysis of topography and river valleys in Central Italy. 

 Geomorphology 101–102, 105–118.

Aucelli P.P.C., Cavinato G.P. & Cinque A. 1996: Geomorphological 

evidence of Pliocene-Quaternary tectonics in the Adriatic pied-

mont of the Abruzzi Apennines. Il Quaternario – Ital. J. Quat. 

Sci. 9, 1, 299–302 (in Italian with English Abstract).

Aucelli P.P.C., Iannantuono, E. & Rosskopf, C.M. 2009: Recent evo-

lution and erosion risk of the Molise coast (southern Italy).  Boll. 

Soc. Geol. Ital. 128, 3, 759–771. 

Aucelli P.P.C., Amato V., Cesarano M., Pappone G., Rosskopf C., 

Ermolli E. & Scarciglia F. 2011: New morphostratigraphic and 

chronological constraints for the Quaternary paleosurfaces of the 

Molise Apennine (southern Italy). Geol. Carpath. 62, 1, 17–26.

Berti C. 2008: The Neogene-Quaternary morphotectonic analysis of 

the Marsicano-Peligna region (Central Appenines). PhD in Geo-

logy and evolution of the Lithosphere, 21

st

 Cycle, Università “G. 

d’Annunzio” di Chieti-Pescara (in Italian with English abstract).

Bonini L., Di Bucci D., Toscani G., Seno S. & Valensise G. 2014: On 

the complexity of surface ruptures during normal faulting earth-

quakes: Excerpts from the 6 April 2009 L’Aquila (central Italy) 

earthquake (M w 6.3). Solid Earth 5, 1, 389–408. 

Bracone V., Amorosi A., Aucelli P.P.C., Rosskopf C.M., Scarciglia F., 

Di Donato V. & Esposito P. 2012: The Pleistocene tectono- 

sedimentary evolution of the Apenninic foreland basin between 

Trigno and Fortore rivers (Southern Italy) through a sequence- 

stratigraphic perspective. Basin Research 24, 2, 213–233.

Buccolini M., Gentili B., Materazzi M., Aringoli D., Pambianchi G. 

background image

27

GEOMORPHOLOGICAL EVOLUTION IN THE ABRUZZO AREA, CENTRAL ITALY: TWENTY YEARS OF RESEARCH

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

& Piacentini T. 2007: Human impact and slope dynamics evolu-

tionary trends in the monoclinal relief of Adriatic area of central 

Italy. Catena 71, 1, 96–109.  

Buccolini M., Gentili B., Materazzi M. & Piacentini T. 2010: Late 

Quaternary geomorphological evolution and erosion rates in the 

clayey peri-Adriatic belt (central Italy). Geomorphology 116, 

1–2, 145–161. 

Calamita F., Piacentini T., Pizzi A., Rusciadelli G. & Trincardi F. 

2012: Explanatory notes to the Geological Map of Italy (scale 

1:50,000), Sheet 372 “Vasto”. Servizio Geologico d’Italia, 

ISPRA, Roma (in Italian with English abstract).

Carminati E. & Doglioni C. 2012: Alps vs. Apennines: The paradigm 

of a tectonically asymmetric earth. Earth-Sci. Rev. 112, 67–96.

Castiglioni B. 1935. The morphological research in the Pliocene 

 terrains of the Central Italy. Pubblicazione Istituto Geografico 

Università di Roma s. A, 4 (in Italian).

Cavinato G.P. & De Celles P.G. 1999: Extensional basins in the tecto-

nically bimodal central Apennines fold-thrust belt, Italy: 

Response to corner flow above subducting slab in retrograde 

motion. Geology 27, 955–958.

Cavinato G.P., Carusi C., Dall’Asta M., Miccadei E. & Piacentini T. 

2002: Sedimentary and tectonic evolution of Plio-Pleistocene 

alluvial and lacustrine deposits of Fucino Basin (central Italy). 

Sediment. Geol. 148, 1–2, 29–59. 

Centamore E., Ciccacci S., Del Monte M., Fredi P. & Lupia Palmieri 

E. 1996. Morphological and morphometric approach to the study 

of the structural arrangement of the North-Eastern Abruzzo 

(Central Italy). Geomorphology 16, 127–137.

Ciccacci S., D’Alessandro L., Dramis F. & Miccadei E. 1999: Geo-

morphologic Evolution and Neotectonics of the Sulmona 

 Intramontane Basin (Abruzzi, Apennine, Central Italy). ZGeo-

morphol. 118, 27–40.

Cinque A., Patacca E., Scandone P. & Tozzi M. 1993: Quaternary 

kinematic evolution of the Southern Apennines. Relationships 

between surface geological features and deep lithospheric struc-

tures. Annali di Geofisica 36, 2, 249–260.

Cipollari P., Cosentino D., Esu D., Girotti O., Gliozzi E. & Praturlon A. 

1999: Thrust-top lacustrine-lagoonal basin development in 

accretionary wedges: Late Messinian (Lago-Mare) episode in 

the Central Apennines (Italy). Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 151, 1–3, 149–166.

Coltorti M. & Pieruccini P. 2000. A late Lower Pliocene planation 

surface across the Italian Peninsula: a key tool in neotectonic 

studies. J. Geodyn. 29, 323–328.

Coltorti M., Consoli M., Dramis F., Gentili B. & Pambianchi G. 1991: 

The geomorphological evolution of the alluvial plains of central 

and southern Marche. Geogr. Fis. Dinam. Quat. 14, 1, 87–100 

(in Italian with English abstract).

Coltorti M., Farabollini P., Gentili B. & Pambianchi G. 1996: Geo-

morphological evidence for anti-Apennine faults in the 

Umbro-Marchean apennines and in the peri-Adriatic Basin, 

Italy. Geomorphology 15, 1, 33–45. 

D’Agostino N., Jackson J.A., Dramis F. & Funiciello R. 2001: Inte-

ractions between mantle upwelling, drainage evolution and 

active normal faulting: an example from central Apennines 

(Italy). Geophys. J. Int. 141, 475–497.

D’Alessandro L., Miccadei E. & Piacentini T. 2003: Morphostruc-

tural elements of central-eastern Abruzzi: contributions to the 

study of the role of tectonics on the morphogenesis of the Apen-

nine chain. Quat. Int. 101–102, 115–124. 

D’Alessandro L., Miccadei E. & Piacentini T. 2008: Morphotectonic 

study of the lower Sangro River valley (Abruzzi, Central Italy). 

Geomorphology 102, 145–158.

Della Seta M., Del Monte M., Fredi P., Miccadei E., Nesci O., 

 Pambianchi G., Piacentini T. & Troiani F. 2008: Morphotectonic 

evolution of the Adriatic piedmont of the Apennines: 

 

an advancement in the knowledge of the Marche-Abruzzo 

 border area.  Geomorphology 102, 119–129.

Della Seta M., Martino S. & Scarascia Mugnozza G. 2013: Quater-

nary sea-level change and slope instability in coastal areas: 

Insights from the Vasto Landslide (Adriatic coast, central Italy). 

Geomorphology 201, 462–478. 

Del Monte M., Di Bucci D. & Trigari A. 1996: The morphotectonic 

setting of the region between the Majella and the Adriatic Sea 

(Abruzzese Apennines). Mem Soc Geol  Ital 51, 419–430 (in 

 Italian with English abstract).

Demangeot J. 1965: Geomorphologie des Abruzzes Adriatiques. 

 Edition du Centre National de la Recherche Scientifique (Paris) 

15, 1–403. 

Di Bucci D. & Angeloni P. 2013: Adria seismicity and seismotecto-

nics: review and critical discussion. Special issue: In: Bigi S., 

D’Ambrogi C. & Carminati E. (Eds.): The geology of the Peri-

adriatic basin and the Adriatic Sea. Mar. Pet. Geol. 42, 

182–190. 

Dramis F. 1993: The role of long-range tectonic uplift in the genesis 

of the Apennine relief. Studi Geol. Camerti vol. spec. 1992/1, 

9–15 (in Italian with English abstract).

Dufaure J.J., Bossuyt D. & Rasse M. 1989: Deformation Quaternaire 

et morphogenese de l’Apennin Central adriatique. Phisio-Geo 

18, 9–46.

Faccenna F., Becker T.W., Auer L., Billi A., Boschi L., et al. 2014: 

Mantle dynamics in the Mediterranean. Rev. Geophys. 52, 3, 

283–332. 

Galadini F. & Messina P. 2004: Early-Middle Pleistocene eastward 

migration of the Abruzzi Apennine (central Italy) extensional 

domain. J. Geodyn. 37, 57–81. 

Giaccio B., Galli P., Messina P., Peronace E., Scardia G., Sottili G., 

Sposato A., Chiarini E., Jicha B. & Silvestri, S. 2012: Fault and 

basin depocentre migration over the last 2 Ma in the L’Aquila 

2009 earthquake region, central Italian Apennines. Quat. Sci. 

Rev. 56, 69–88. 

Giannandrea P., Marino M., Romeo M. & Schiattarella M. 2014: 

 Pliocene to Quaternary evolution of the Ofanto Basin in southern 

Italy: An approach based on the unconformity-bounded strati-

graphic units. Ital. J. Geosci. 133, 1, 27–44. 

Giano S.I. & Giannandrea P. 2014: Late Pleistocene differential uplift 

inferred from the analysis of fluvial terraces (southern Apen-

nines, Italy). Geomorphology 217, 89–105. 

Giano S.I., Gioia D. & Schiattarella M. 2014: Morphotectonic evolu-

tion of connected intermontane basins from the southern 

 Apennines, Italy: the legacy of the pre-existing structurally con-

trolled landscape. In: Aucelli P.P.C., Della Seta M., Giano S.I., 

Schiattarella M. (Eds.): Special Issue: Intermontane Basins: 

Quaternary morphoevolution of Central-Southern Italy. 

 

 Rendiconti Lincei – Scienze Fisiche e Naturali 25, 2, 241-252. 

Gioia D., Gallicchio S., Moretti M. & Schiattarella M. 2014: Land-

scape response to tectonic and climatic forcing in the foredeep of 

the southern Apennines, Italy: Insights from Quaternary strati-

graphy, quantitative geomorphic analysis, and denudation rate 

proxies.  Earth Surface Processes and Landforms 39, 6, 

814–835. 

ISPRA 2010a: Geological Map of Italy, scale 1:50,000, Sheet 361 

“Chieti”. Servizio Geologico d’Italia, ISPRA, Roma. Retrieved 

from  http://www.isprambiente.gov.it/Media/carg/361_CHIETI/

Foglio.html (in Italian with English abstract and legend).

ISPRA 2010b: Geological Map of Italy, scale 1:50,000, Sheet 361 

“Chieti”. Servizio Geologico d’Italia, ISPRA, Roma. Retrieved 

from 

http://www.isprambiente.gov.it/Media/carg/351_PES-

CARA/Foglio.html  (in  Italian  with  English  abstract  and 

legend).

ISPRA 2010c: Geological Map of Italy, scale 1:50,000, Sheet 372 

“Vasto”. Servizio Geologico d’Italia, ISPRA, Roma. Retrieved 

background image

28

MICCADEI, PIACENTINI and BUCCOLINI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 19 – 28

from  http://www.isprambiente.gov.it/Media/carg/372_VASTO/

Foglio.html (in Italian with English abstract and legend).

ISPRA 2010d: Geological Map of Italy, scale 1:50,000, Sheet 378 

“Scanno”. Servizio Geologico d’Italia, ISPRA, Roma. Retrieved 

from http://www.isprambiente.gov.it/Media/carg/378_SCANNO/

Foglio.html (in Italian with English abstract and legend).

Labella R, Capolongo D., Giannandrea P., Giano S.I. & Schiattarella 

M. 2014: Morphometric analysis of fluvial network and age con-

straints of terraced surfaces of the Ofanto basin, Southern Italy. 

Special Issue: Intermontane Basins: Quaternary morphoevolu-

tion of Central-Southern Italy, Aucelli P.P.C., Della Seta M., 

Giano S.I., Schiattarella M. Eds. Rendiconti Lincei - Scienze 

Fisiche e Naturali 25, 2, 253–263. 

Lupia Palmieri E., Ciccacci S., Civitelli G., Corda L., D’Alessandro 

L., Del Monte M., Fredi P. & Pugliese F. 1996: Quantitative geo-

morphology and morphodynamics of Abruzzoarea: I. The River 

Sinello drainage basin. Geogr. Fis. Dinam. Quat. 18, 31–46 (in 

Italian with English abstract).

Lupia Palmieri E., Centamore E., Ciccacci S., D’Alessandro L., Del 

Monte M., Fredi P. & Pugliese F. 1998: Quantitative geomor-

phology and morphodynamics of the Abruzzo area: II-the 

Tordino River drainage basin. Geogr. Fis. Dinam. Quat. 21, 

113–129 (in Italian with English abstract).

Mayer L., Menichetti M., Nesci O. & Savelli D. 2003. Morphotec-

tonic approach to the drainage analysis in the North Marche 

region, central Italy. Quat. Int. 101–102, 157–167.

Mascioli F. 2008: Geomorphological characteristics of the high 

coasts: forms and evolutionary processes in southern Abruzzo and 

northern Apulia. PhD. in Earth sciences for the assessment of 

earth dynamics, geological risks, and resources, 20th Cycle, 

Università “G. d’Annunzio” di Chieti-Pescara (in Italian with 

English abstract).

Mazzanti R. & Trevisan L. 1978: Evoluzione della rete idrografica 

nell’Appennino centro-settentrionale. Geogr. Fis. Dinam. Quat. 

1, 55–62.

Mazzoli S., Ascione A., Buscher J.T., Pignalosa A., Valente E. & 

 

Zattin M. 2014: Low-angle normal faulting and focused 

 exhumation associated with late Pliocene change in tectonic 

style in the southern Apennines (Italy). Tectonics 33, 9, 

1802–1818.

Miccadei E., Barberi R. & Cavinato G.P. 1999: La geologia quaterna-

ria della Conca di Sulmona. Geol. Romana 34, 59–86.

Miccadei E., Paron P. & Piacentini T. 2004: The SW escarpment of 

the Montagna del Morrone (Abruzzi, Central Italy):

 

geomor-

phology of a fault-generated mountain front. Geogr. Fis. Dinam. 

Quat. 27, 55-87. 

Miccadei E., Mascioli, F. & Piacentini T. 2011a: Quaternary geomor-

phological evolution of the Tremiti Islands (Puglia, Italy). Quat. 

Int. 232, 3–15.

Miccadei E., Mascioli F., Piacentini T. & Ricci F. 2011b: Geomorpho-

logical features of coastal dunes along the central Adriatic coast 

(Abruzzo, Italy). J. Coastal Res. 27, 6, 1122–1136.

Miccadei E., D’Alessandro L., Parotto M., Piacentini T. & Praturlon 

A. 2012a: Explanatory notes to the Geological Map of Italy 

(scale 1:50,000), Sheet 378 “Scanno”. Servizio Geologico d’Ita-

lia, ISPRA, Roma (in Italian with English abstract).

Miccadei E., Orrù P., Piacentini T., Mascioli F. & Puliga G. 2012b: 

Geomorphological map of Tremiti Islands Archipelago (Puglia, 

Southern Adriatic Sea, Italy), scale 1:15,000. Journal of Maps 8, 

1, 74–87. 

Miccadei E., Piacentini T., Gerbasi F. & Daverio F. 2012c: Morpho-

tectonic map of the Osento River basin (Abruzzo, Italy), scale 

1:30,000. Journal of Maps 8, 1, 62–73. 

Miccadei E., Piacentini T., Dal Pozzo A., La Corte M. & Sciarra M. 

2013: Morphotectonic map of the Aventino-Lower Sangro  valley 

(Abruzzo, Italy), scale 1:50,000. Journal of Maps 9, 3, 

390–409.

Molin P. & Fubelli G. 2005: Morphometric evidences of the topo-

graphic growth of the central Apennines. Geogr. Fis. Dinam. 

Quat. 28, 47–61.

Nesci O. & Savelli D. 2003: Diverging drainage in the Marche Apen-

nines (central Italy). Quat. Int. 101–102, 203–209.

Nesci O., Savelli D. & Troiani F. 2012: Types and development of 

stream terraces in the Marche Apennines (Central Italy): 

 

A review and remarks on recent appraisals. Geomorphologie: 

relief, processus, environnement 2, 215-238. 

Papanikolaou I.D., Roberts G.P. & Michetti A.M. 2005: Fault scarps 

and deformation rates in Lazio-Abruzzo, Central Italy: Compa-

rison between geological fault slip-rate and GPS data. Tecto-

nophysics 408, 1–4, 147–176.

Parlagreco L., Mascioli F., Miccadei E., Antonioli F., Gianolla D., 

Devoti S. & Leoni G. 2011: Holocene Relative Sea Level Rise 

along the Abruzzo coast (western central Adriatic). Quat. Int. 

232, 179–186.

Paron P. 2004: Geomorphological evolution of the drainage network 

in the north-eastern Abruzzo, with GIS applications. PhD. in 

Earth sciences for the assessment of earth dynamics, geological 

risks, and resources, 17

th

 Cycle, Università “G. d’Annunzio” di 

Chieti-Pescara (in Italian with English abstract).

Parotto M., Cavinato G.P., Miccadei E. & Tozzi M. 2004: Line CROP 

11: Central Apennines. Memorie Descrittive della Carta Geo-

logica d’Italia 62, 145–153.

Patacca E., Scandone P., Di Luzio E., Cavinato G.P. & Parotto M. 

2008: Structural architecture of the central Apennines: Interpre-

tation of the CROP 11 seismic profile from the Adriatic coast to 

the orographic divide. Tectonics 27, TC3006.

Piacentini T. 2000: The Neogene-Quaternary evolution of the area 

between the Marsica and the northeastern Peligna region 

(Abruzzo): Paleogeographic and structural analysis. PhD. in 

Geodynamics, 12

th

 Cycle, Universita di Roma Tre (in Italian).

Piacentini T. & Miccadei E. 2014: The role of drainage systems and 

intermontane basins in the Quaternary landscape of the Central 

Apennines chain (Italy). In: Aucelli P.P.C., Della Seta M., Giano 

S.I., Schiattarella M. (Eds.): Special Issue: Intermontane Basins: 

Quaternary morphoevolution of Central-Southern Italy.  Rendi-

conti Lincei – Scienze Fisiche e Naturali 25, 2, 139–150. 

Piacentini T., Sciarra M., Miccadei E. & Urbano T. 2015: Near-sur-

face deposits and hillslope evolution of the Adriatic piedmont of 

the Central Apennines (Feltrino Stream basin and minor coastal 

basins, Abruzzo, Italy). Journal of Maps 11, 1, 1–15. 

Ricci F. 2005: The Late Quaternary geomorphological evolution of 

the Abruzzo coast. PhD. in Earth sciences for the assessment of 

earth dynamics, geological risks, and resources, 18

th

 Cycle, 

 Università “G. d’Annunzio” di Chieti-Pescara (in Italian with 

English abstract).

Santo A., Ascione A., Di Crescenzo G., Miccadei E., Piacentini T. & 

Valente E. 2014: Tectonic-geomorphological map of the middle 

Aterno River valley (Abruzzo, Central Italy). Journal of Maps 

10, 3, 365–378.

Vezzani L., Festa A. & Ghisetti F.C. 2010: Geology and tectonic evo-

lution of the Central-Southern Apennines, Italy. Special Paper, 

Geological Society of America 469, 1–58.

Villani F. 2004: Morphostructural analysis of the Pliocene-Quater-

nary vertical movements between the Gulf of Gaeta (Lt) and 

Vasto (Ch): the Sangro-Volturno watershed area (Central-Southern 

Apennines). PhD. in Geology and evolution of the Lithosphere, 17

th

 

Cycle, Università “G. d’Annunzio” di Chieti-Pescara (in Italian 

with English abstract).